MKT Library

Saturday is Sexy… Sunday is Movies Night

Micro-evolution (Evolution Series – Part 4)

House sparrows have adapted to the climate of North America, mosquitoes have evolved in response to global warming, and insects have evolved resistance to our pesticides. These are all examples of microevolution — evolution on a small scale.

Here, you can explore the topic of microevolution through several case studies in which we’ve directly observed its action.

We can begin with an exact definition.

Micro-Evolution

Defining microevolution

Microevolution is evolution on a small scale — within a single population. That means narrowing our focus to one branch of the tree of life.

If you could zoom in on one branch of the tree of life scale — the insects, for example — you would see another phylogeny relating all the different insect lineages.

Microevolution is evolution on a small scale — within a single population. That means narrowing our focus to one branch of the tree of life.

If you continue to zoom in, selecting the branch representing beetles, you would see another phylogeny relating different beetle species. You could continue zooming in until you saw the relationships between beetle populations. Take a look at the image on the right.

But how do you know when you’ve gotten to the population level?

Defining populations

For animals, it’s fairly easy to decide what a population is. It is a group of organisms that interbreed with each other — that is, they all share a gene pool. So for our species of beetle, that might be a group of individuals that all live on a particular mountaintop and are potential mates for one another.

The potential to interbreed in nature defines the boundaries of a population.

Biologists who study evolution at this level define evolution as a change in gene frequency within a population.


Detecting micro-evolutionary change

We’ve defined microevolution as a change in gene frequency in a population and a population as a group of organisms that share a common gene pool — like all the individuals of one beetle species living on a particular mountaintop.

Imagine that you go to the mountaintop this year, sample these beetles, and determine that 80% of the genes in the population are for green coloration and 20% of them are for brown coloration. You go back the next year, repeat the procedure, and find a new ratio: 60% green genes to 40% brown genes.

Population after 1 Year

You have detected a microevolutionary pattern: a change in gene frequency. A change in gene frequency over time means that the population has evolved.

The big question is, how did it happen?


Mechanisms of microevolution

There are a few basic ways in which microevolutionary change happens. Mutation, migration, genetic drift, and natural selection are all processes that can directly affect gene frequencies in a population.

Imagine that you observe an increase in the frequency of brown coloration genes and a decrease in the frequency of green coloration genes in a beetle population. Any combination of the mechanisms of microevolution might be responsible for the pattern, and part of the scientist’s job is to figure out which of these mechanisms caused the change:

Mutation

Some “green genes” randomly mutated to “brown genes” (although since any particular mutation is rare, this process alone cannot account for a big change in allele frequency over one generation).

Mutated gene results in brown coloration. Since mutation is rare, this process alone cannot for big change

Migration (or gene flow)

Some beetles with brown genes immigrated from another population, or some beetles carrying green genes emigrated.

Migration

Genetic drift

When the beetles reproduced, just by random luck more brown genes than green genes ended up in the offspring. In the diagram at right, brown genes occur slightly more frequently in the offspring (29%) than in the parent generation (25%).

First VS Second Generation

Natural selection

Beetles with brown genes escaped predation and survived to reproduce more frequently than beetles with green genes, so that more brown genes got into the next generation.

Predator eats the more easily seen beetles lacking the brown gene.. resulting in an increase in brown gene frequency


Examples of microevolution

Microevolution is defined as a change in gene frequency in a population. Because of the short timescale of this sort of evolutionary change, we can often directly observe it happening. We have observed numerous cases of natural selection in the wild, as exemplified by the three shown here.

The size of the sparrow

House sparrows were introduced to North America in 1852. Since that time the sparrows have evolved different characteristics in different locations. Sparrow populations in the north are larger-bodied than sparrow populations in the south. This divergence in populations is probably at least partly a result of natural selection: larger-bodied birds can often survive lower temperatures than smaller-bodied birds can. Colder weather in the north may select for larger-bodied birds.

Average size of male sparrow from smallest to largest

As this map shows, sparrows in colder places are now generally larger than sparrows in warmer locales. Since these differences are probably genetically based, they almost certainly represent microevolutionary change: populations descended from the same ancestral population have different gene frequencies.

Coping with global warming

We observe natural selection following many human-induced changes in the environment. For example, global warming has caused slightly higher temperatures and longer summers. What are the evolutionary effects of this environmental change? We are just beginning to figure out the answers to this question as new data are collected.

Consider the potential effect of global warming on organisms that are dormant during the winter. These organisms stop growth and reproduction during the winter.

Wyeomyia smithii

They would probably be more “fit” if they could spend more of their time reproducing and gathering resources for reproduction, but the low temperatures don’t allow it. However, global warming would allow them to do just that: spend more time growing and reproducing — but taking advantage of this opportunity is likely to require evolutionary change.

he mosquito species Wyeomyia smithii, shown here in a pitcher plant, has evolved in response to global warming. Mosquitoes use day length (not temperature) as a cue to tell them what time of year it is and when to overwinter — this “cuing” is genetically controlled. In a warmer climate with shorter winters, we’d expect mosquitoes that waited a little longer to go dormant to have higher fitness and be selected for. And in fact, researchers who have been collecting data on these mosquitoes for almost 30 years have observed exactly this sort of change. Mosquito populations have evolved so that slightly shorter days are required as a cue for going dormant.

This graph illustrates changes in global temperature from 1880 to 2000. Between 1972 and 1996 mosquito populations at 50 N latitude evolved to wait 9 days later to go dormant.

Building resistance

Pesticide resistance, herbicide resistance, and antibiotic resistance are all examples of microevolution by natural selection.

Resistance

The enterococci bacteria, shown here, have evolved a resistance to several kinds of antibiotics.

Source: Berkeley University

One comment on “Micro-evolution (Evolution Series – Part 4)

  1. Pingback: A Fascinating Illustration of the tree of life (or the Bush of life) (High Resolution) | MKT Library

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 301 other followers

Follow MKT Library on WordPress.com
ultimatemindsettoday

A great WordPress.com site

Caz the Comic Strip

Cartoon strip about Caz and her family

candidscience.wordpress.com/

Don't just read the news, understand it!

Coffee Conversations

Official blog of Zurairi AR: Journo, researcher, humanist, father.

CHOUETT

Read it! 📖 Spark it! ✨

mesopotamia4ever

Everything on Mesopotamia, Modern Iraq, and Global Art

The Hitchhiking Postdoc

A guide to chemical biology and to the mind of a hitchhiking postdoc

TechCrunch

Startup and Technology News

Scrub Physics

Writings on science, technology, economics, and rationality

seepurple

illuminate

Snapzu Science

We blog the best science & space posts as submitted and voted on by the Snapzu community! Invites available!

ScienceQ publishing Group

Blog of scienceQ publishing Group

Duke Energy Nuclear Information Center

A glimpse into the world of nuclear energy

Sparkonit

Science - Simplified

Métaphysicien

My encounters with Cosmology

%d bloggers like this: